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Abstract. Supermathematics methods are used in the exact solution of the mean spherical 
model of a spin glass, first solved by Kosterlitz, Thouless and Jones. Our analysis shows 
that the model is pathological, in the sense that the exact solution reduces to that obtained 
from two decoupled replicas. We show explicitly that even one replica gives the exact 
result, which means that the ‘wrong’ solution of taking the configurational average of the 
partition function is correct in this model. 

1. Introduction 

The spherical model of a spin glass has been introduced and solved exactly by Kosterlitz 
et a1 (1976) using Wigner’s exact result for the density of eigenvalues of a large random 
matrix (Mehta 1967). They also found that the replica method with the replica 
symmetric SK approximation (Sherrington and Kirkpatrick 1975) reproduced the exact 
results. 

In a later publication, de Almeida et a1 (1978) have shown that the SK solution for 
the m-vector model spin glass is unstable below T, for any finite m but it is the only 
stable solution when m + co in the spherical model limit, in agreement with the results 
of Kosterlitz et al. 

In the present paper we study the mean spherical model (Joyce 1972) of a spin 
glass by using supermathematin (Efetov 1983) with the purpose of having a better 
understanding of a new technique by testing it on a problem that has a well known 
exact solution. We explicitly show in this paper that the exact solution reduces to two 
decoupled ‘replicas’, thus explaining why the SK method is exact in this model: any 
number n of replicas will decouple, reproducing n times the exact free energy, the 
limit n + 0 being trivial in this case. The model is thus pathological in the sense that 
the results of Kosterlitz et a1 are also obtained for n = 1 and this means that the wrong 
solution for the thermodynamic potential Pa= -ln(Q)cA, where Q is the partition 
function and ( )CA indicates a configurational average, becomes exact in the random 
spherical model with the SK type of interactions, as is shown in 0 2. In a recent 
investigation on the random spherical model, Pastur (1982) discussed the problematic 
nature of the long-range interaction case. 

Although the Grassmann variables technique may look an exceedingly complicated 
method when applied to the present problem, one must take into account that we are 

t Partially supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnol6gico (CNPq) and 
Financiadora de Estudos e Projetos (FINEP). 

0305-4470/87/010025 + 10$02.50 0 1987 IOP Publishing Ltd 25 



26 A Theumann 

in fact giving an alternative derivation of Wigner’s semicircular law, as it is shown at 
the end of 9 2. The elegance and simplicity of the solution obtained by Kosterlitz et 
a1 (1976) stems from the fact that they used Wigner’s law from the start. The semicircular 
law has also been derived by Edwards and Jones (1976) and lately by Verbaarschot 
and Zirnbauer (1984) using the replica method. 

Theoretical physicists have long recognised the importance of Grassmann anticom- 
muting c variables in the theory of condensed matter because they give a natural 
representation of fermion fields in a functional integral formalism (Bell 1962, Berezin 
1966, Edwards and Sherrington 1967). More recently the Grassmann variables tech- 
nique has also been applied in a wider context. Supersymmetry methods have proved 
to be a powerful tool in the problem of spins in a random field (Parisi and Sourlas 
1979), to calculate the exact density of states of electrons in a random potential and 
a strong magnetic field (Wegner 1983, Brezin er a f  1984, Klein and Perez 1984) and 
in the study of random two-dimensional Ising models (Jug 1984). Verbaarschot and 
Zirnbauer (1985) have shown the advantage of using the method of superfields in a 
problem where the replica method fails to give the correct answer. A recent review in 
supermathematics and its applications to the theory of disordered metals is given by 
Efetov (1983). What makes supermathematics a particularly useful method to study 
random systems is that it allows us to write a generating functional Z ( { h } ) ,  for a set 
of auxiliary fields { h } ,  such that Z(0) equals unity while the correlation functions are 
obtained from functional differentiation with respect to {h} .  It then follows that the 
configurational average of Z({  h } )  can be directly calculated without using the replica 
method (De Dominicis 1978). This approach is followed in 9 2 where the generating 
functional Z ( { h } )  is written as an integral over two commuting fields uic, a = 1 or 2, 
and a complex Grassmann field x,, at each lattice site i. Explicit calculations give the 
results mentioned at the beginning of this section. 

2. General formalism and exact solution 

The model we consider has continuous spins uj at lattice sites j coupled by random 
exchange constants Jij between all distinct pairs of spins with a Gaussian probability 
distribution of zero mean and variance J 2 /  N, for the total number of lattice sites, N. 

The partition function in the mean spherical model (Joyce 1972) is given at zero 
field by 

1 

for r a N x N random matrix with elements 

and p = ( k B T ) - ’ .  In the uniform model the ‘chemical potential’ p ensures that, on 
the average, the uj lie on a sphere of radius N. In the present random case we impose 
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the spherical condition on the configurational average: 

with the obvious notation 

and (. . indicates a configurational average over the random .Ii,. The problem then 
reduces to the calculation of (In Q ( C ( ) ) ~ ~  and this was achieved by Kosterlitz er a1 
(1976) using Wigner’s semicircular law. 

Here we use an alternative method. We introduce a system of N complex anticom- 
muting Grassmann variables xi, one at each lattice site, with the properties (Efetov 1983) 

In the following we indicate Grassmann variables with Greek letters. Next we 
consider the functional: 

with Q ( p )  as in (1) and 

for hi, a set of two auxiliary fields at sites i, (Y = 1 or 2. Z({h}) has the following 
properties: 

from the definition in equation ( 5 ) .  The thermodynamic potential per site is the solution 
of the differential equation, from equation (1): 

with the boundary condition: 
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Then all physical properties of the system can be obtained from a knowledge of 
Z [ { h ) ] .  In particular the spherical condition in (4) can be written from (12): 

the spin glass order parameter can be defined from (13) (Sherrington and Kirkpatrick 
1975): 

1 

= 8- c ((aiaj)TA-(ai)TA(aj.)TA)CA. (18) N i , j  

From ( l ) ,  (8) and (9) we can write 

The Gaussian aveiage over the random Ju is now trivial to perform so we obtain 

2 

-m ,,U 7T a = l  

where 

K = p J .  (21) 
Z ( { h } )  is just the partition functional of two ‘replicas’ coupled by a Grassmann field. 
We notice first that the linear combination 

7, = C Xiaiu  

is a Grassmann variable as 

7: = X & j U j m f f j a  = 0 (23) 
i # j  

because the antisymmetry of the product xxj = -xjxi, while Zix? ,y i  is an ordinary c 
number: 
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We then use the Gaussian identity for an ordinary variable: 

ea2/ N = /-: ( y2 dx exp( - Nx2 + 2xa) 

and its Grassmann variable counterpart (Efetov 1983) 

exp[-(N9*9+9*q+q*9)] 
d9* d9 

exp( 9) = / - 
N 

to write (20) in terms of a set of order parameter fields: 

cD dx, dx2 dq ds 
Z ( { h ' )  = / N 2  

d9T d9, de; de2 

xexp[ - N ( v  + q2+ s 2 +  0T9, + Of92 - A 

where A is given by 

and we have neglected the last term in the exponent of (20) because it gives a 
contribution O( 1/  N). Equation (28) splits into the product of N one-site quadratic 
integrals that are easily performed by using ( 1 )  and (8). The result can be expressed 
in terms of the 4 x 4  supermatrix: 

A=[-: 

with 

A, = z -is 

g = ( K / d ) z .  

A, = z - X, a = 1 , 2  

It is obtained that 

where 
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By introducing the 4 x 4 supermatrix: 

one can write (27) in supersymmetric form: 

Z({h}) = DXexp{-fN SupTr[X'+ln(z-X)]} (35) I 
where DX is a shorthand notation for the element of volume in (27). The supertrace 
and superdeterminant of a supermatrix like A in (29) are defined by 

Sup Tr A = Tr M -Tr S 

Sup Det A = ISIJM - 8+S-'Bl-' (36) 

Sup Tr In A = In Sup Det A. 

We refer the reader to the article by Efetov (1983) for a detailed account on 
superalgebra. The method followed in the thermodynamic limit is by steepest descent 
in the ordinary and Grassmann variables. This would lead from (35) to the saddle-point 
matrix equation 

(37) 

Although equation (37) is in a compact form, to invert a 4 x 4  supermatrix leads 
to complicated expressions. We prefer to take advantage of the fact that any function 
of a Grassmann variable is necessarily a first degree polynomial in that variable and 
to expand A in (32) as 

X = f( z - X)-' = ;A-'. 

Only terms that give a significant contribution in the thermodynamic limit have 
been kept in (38). 

Terms in A proportional to 8T8,8T82 will give a contribution O( 1/  N) as can easily 
be checked from (27) and the integration rules in ( 7 ) .  Now 6 indicates a two-component 
column vector. The result for Z({h}) is 

where 

G =f(x:+x:) + q2+ s2 - In A,+; 1nIMI. (40) 
From (16) and (39) we obtain the leading term in the spherical condition: 

and from (17) the spin glass order parameter is given by 
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while 

The integrals in (41)-(43) are performed by steepest descent with the result in the 
thermodynamic limit: 

and the spherical condition becomes 

while from (42): 

The subscript SP in a function indicates its value at the saddle point while D in (44) 
is the determinant of the second derivatives of G: 

(47) 

The bar over the variables indicates the solutions of the saddle-point equations 

D = ( 1  -2.f,x2 -2qZ)[( 1 - 2 2 3 (  1 - 2%:) -4441 - 8ij2[27:+ %:+4Zlff2( q2 - n,n,)]. 

obtained from (40) or from (37) when 8 = 0 :  

21 =(~-22)/2lMl (48a) 

22 = ( z - 2,)/2lMI (48b) 

4 = 4/2/MI (49) 

iS= 1 / 2 ( z - i S )  (50) 

)MI = ( Z  - ~ I ) ( z  -22) - q2. (51) 

For T > T, and K = PJ small, z and /MI take large values from (45) and (48). Then 
from (49) 

q = 0  (52) 

and 

By introducing the results of (52) and (53) in (40), (44) and (47) one verifies that 

ZSP(0) = 1 (54) 
thus proving the consistency of the theory. Equation (53), together with the spherical 
condition in (45), allow us to solve for z as a function of K :  

z=- ' (  K + -  L) K < 1 .  Jz (55) 
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At the critical temperature K ,  = 1 we also have z, = f i  and 21Nl(, = 1. For K > K,, z 
‘sticks’ to the value z, and we find that the only real solutions are still given by (52) 
and (53) with z = z,, while the spherical condition in (45) no longer holds. 

The free energy per site is given by 

P F = p C l - ( K / J Z ) z  (56) 

where from (14), (15) and (45) pCl is the solution of 

with the boundary condition 

We obtain for Pa( z) by integrating (57) 

which gives for the free energy in (56) 

- zK2- - (  1 +ln(2)) T >  T, 
- K +f In( K / 2 )  +$ T <  T, 

and a negative divergent entropy at low temperature: 

P F =  { 

S(T)=-kg ln  (2;T). - (61) 

From (18) and (39) the uniform susceptibility is 

Equations (60)-(62) are the results of Kosterlitz et al (1976). We believe there is 
a printing error in (7) of this reference for T < T, as the quoted results for the low 
temperature entropy and specific heat are obtained from ln(J/2T) in place of In( T/2J).  

The present exact solution using supermathematics explains some pathological 
aspects of the model. In spite of the complexity of the method the result of (39) is 
deceptively simple. Z ( { h } )  reduces to the partition functional for only two ‘replicas’ 
that are effectively uncoupled because the solution to the saddle-point equations is 
4 = 0 for all temperatures. The parameter s associated to ( ~ “ x )  only plays the role of 
normalising Z(0) to unity. In fact, it is trivial to show that the ‘very wrong’ solution 
that considers only one replica: 

(63) 
also reproduces the exact result. Following the same steps that lead to (27) we obtain 

p F  = -In( Q ( p  ))CA - p 

where 

d = f [x2+ ln(z - x)+ In( K / f i ) ] ,  
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The saddle-point equation, together with the spherical condition in (4), gives 

- 1 z (z’ 1 ) ’ l 2 = { K / 8  i f K < 1  
l / f i  i f K s 1 ’  x=-=-- --- 

2(z-X)  2 4 2 

It follows that 

@ F  = Gsp - ( K  I ~ ) z  (67) 

coincides with the exact result of (60). The same calculation with a uniform magnetic 
field gives the result of (62) for the susceptibility. 

To end this section we comment on the introduction of the Grassmann fields e,, 6: 
in the derivation of (27). The fact that these fields are so easily integrated using (38) 
shows that they are unnecessary. Indeed, we can use (23) to write in (20) 

and explicit integration of the cia, x:, xI will reproduce (39). The reason we used (26) 
instead was to have more insight into the usual procedure (Efetov 1983, Verbaarschot 
and Zirnbauer 1985) of introducing a superfield order parameter as in (34) that satisfies 
the saddle-point equation (37). The use of (68) would not simplify the calculations, 
but it shows that at least in the present problem the superfield order parameter is only 
a mathematical artifice. Equation (38)  is exact and it tells us that the only solution to 
the saddle point (37) is the trivial one 6, = 6: = 0. 

Finally, we want to point out that, although the method of supermathematics may 
look too involved in the present problem as compared with the elegant solution of 
Kosterlitz er a1 (1976), what we are doing in fact is giving an alternative derivation of 
Wigner’s semicircular law. 

Indeed, the eigenvalue density of the random matrix K in (3 )  is written from (1 ) :  

1 

which gives from (57) and z = (81 K ) p  

3. Discussion 

1 
p (  w ) = - Im[fw - caw’ - K’ - i ~ ) ~ ” ]  

T K 2  

In the present paper we have given one more application of supermathematics to the 
theory of condensed matter by solving the mean spherical model of a spin glass. We 
recovered the exact results of Kosterlitz et a1 (1976) and moreover we showed that 
the exact solution corresponds to uncoupled replicas, thus exhibiting the pathology 
of the model. One may wonder why we obtain a spin glass transition with order 
parameter qSG = 0 above and below the critical temperature. This is because qsc was 
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defined in (17) as ( (ui ) ’TA)CA and (uihA equals zero in the spherical model, as pointed 
out by Berlin and Kac (1952). Then our qSG is not the correct order parameter of the 
theory; the appropriate order parameter should involve rather ( 1 ~ ~ 1 ) ~ ~ .  
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